Roessler Attractor

Roessler Attractor

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-5640-0
Объём: 112 страниц
Масса: 190 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! The Rossler attractor is the attractor for the Rossler system, a system of three non-linear ordinary differential equations. These differential equations define a continuous-time dynamical system that exhibits chaotic dynamics associated with the fractal properties of the attractor. Some properties of the Rossler system can be deduced via linear methods such as eigenvectors, but the main features of the system require non-linear methods such as Poincare maps and bifurcation diagrams. The original Rossler paper says the Rossler attractor was intended to behave similarly to the Lorenz attractor, but also be easier to analyze qualitatively. An orbit within the attractor follows an outward spiral close to the x,y plane around an unstable fixed point. Once the graph spirals out enough, a second fixed point influences the graph, causing a rise and twist in the z-dimension. In the time domain, it becomes apparent that although each variable is oscillating within a fixed range of values, the oscillations are chaotic.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог