Rokhlins Theorem

Rokhlins Theorem

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-6845-8
Объём: 120 страниц
Масса: 203 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, compact 4-manifold M has a spin structure (or, equivalently, the second Stiefel-Whitney class w2(M) vanishes), then the signature of its intersection form, a quadratic form on the second cohomology group H2(M), is divisible by 16. The theorem is named for Vladimir Rokhlin, who proved it in 1952. The intersection form is unimodular by Poincare duality, and the vanishing of w2(M) implies that the intersection form is even. By a theorem of Cahit Arf, any even unimodular lattice has signature divisible by 8, so Rokhlin's theorem forces one extra factor of 2 to divide the signature.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог