Root of a Function

Root of a Function

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1329-7388-7
Объём: 96 страниц
Масса: 166 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! Finding roots of certain functions, especially polynomials, frequently requires the use of specialised or approximation techniques (for example, Newton's method). The concept of complex numbers was developed to handle the roots of quadratic or cubic equations with negative discriminants (that is, those leading to expressions involving the square root of negative numbers).Every real polynomial of odd degree has at least one real number as a root. Many real polynomials of even degree do not have a real root, but the fundamental theorem of algebra states that every polynomial of degree n has n complex roots, counted with their multiplicities. The non-real roots of polynomials with real coefficients come in conjugate pairs. Viete's formulas relate the coefficients of a polynomial to sums and products of its roots.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог