Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-0563-7 |
Объём: | 76 страниц |
Масса: | 135 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, in the field of algebraic number theory, an S-unit generalises the idea of unit of the ring of integers of the field. Many of the results which hold for units are also valid for S-units. Let K be a number field with ring of integers R. Let S be a finite set of prime ideals of R. An element x of K is an S-unit if the principal fractional ideal (x) is a product of primes in S (to positive or negative powers). For the ring of rational integers Z one may take S to be a finite set of prime numbers and define an S-unit to be a rational number whose numerator and denominator are divisible only by the primes in S. The S-units form a multiplicative group containing the units of R. Dirichlet's unit theorem holds for S-units: the group of S-units is finitely generated, with rank (maximal number of multiplicatively independent elements) equal to r + s, where r is the rank of the unit group and s = |S|.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.