Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-5800-1 |
Объём: | 88 страниц |
Масса: | 153 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, specifically functional analysis, the Schatten norm arises as a generalization of p-integrability similar to the trace class norm and the Hilbert–Schmidt norm. The norm is defined as |T| _{S_p} := bigg( sum _{xin sigma (T^*T)} x^{p/2}bigg)^{1/p} for pin [1,infty) and an operator T on the Hilbert space X. Here ?(T * T) denotes the spectrum of the positive operator T*T. This should be interpreted as a multiset. An operator which has a finite Schatten norm is called a Schatten class operator and the space of such operators is denoted by Sp(X). With this norm, Sp(X) is a Banach space, and a Hilbert space for p=2.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.