Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1303-2797-2 |
Объём: | 96 страниц |
Масса: | 166 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! The standard bases of c0 and lp for 1 ? p < ? are Schauder bases. Every orthonormal basis in a separable Hilbert space is a Schauder basis. The Haar system is an example of a basis for Lp(0, 1) with 1 ? p < ?. Another example is the trigonometric system defined below. The Banach space C of continuous functions on the interval, with the supremum norm, admits a Schauder basis. A Banach space with a Schauder basis is necessarily separable, but the converse is false; that is, there exists a separable Banach space without a Schauder basis.[3] A Banach space with a Schauder basis has the approximation property. A theorem of Mazur asserts that every Banach space has an (infinite-dimensional) subspace with a basis. A question of Banach asked whether every separable Banach space has a basis; this was negatively answered by Per Enflo who constructed a Banach space without a basis.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.