Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-5735-6 |
Объём: | 80 страниц |
Масса: | 141 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In probability theory, Schramm–Loewner evolution, also known as stochastic Loewner evolution or SLE, is a conformally invariant stochastic process. It is a family of random planar curves that are generated by solving Charles Loewner's differential equation with Brownian motion as input. It was discovered by Oded Schramm (2000) as a conjectured scaling limit of the planar uniform spanning tree (UST) and the planar loop-erased random walk (LERW) probabilistic processes, and developed by him together with Greg Lawler and Wendelin Werner in a series of joint papers. Schramm–Loewner evolution is conjectured or proved to be the scaling limit of various critical percolation models, and other stochastic processes in the plane.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.