Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-5203-0 |
Объём: | 60 страниц |
Масса: | 111 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In algebra, a Schreier domain is an integrally closed integral domain where every nonzero element is primal; i.e., whenever x divides yz, x can be written as x = x1 x2 so that x1 divides y and x2 divides z. An integral domain is said to be pre-Schreier if every nonzero element is primal. A GCD domain is an example of a Schreier domain. The term "Schreier domain" was introduced by P. M. Cohn in 1960s. The term "pre-Schreier domain" is due to Muhammad Zafrullah. In general, an irreducible element is primal if and only if it is a prime element. Consequently, in a Schreier domain, every irreducible is prime. In particular, an atomic Schreier domain is a unique factorization domain; this generalizes the fact that an atomic GCD domain is a UFD.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.