Schreier Domain

Schreier Domain

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-5203-0
Объём: 60 страниц
Масса: 111 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In algebra, a Schreier domain is an integrally closed integral domain where every nonzero element is primal; i.e., whenever x divides yz, x can be written as x = x1 x2 so that x1 divides y and x2 divides z. An integral domain is said to be pre-Schreier if every nonzero element is primal. A GCD domain is an example of a Schreier domain. The term "Schreier domain" was introduced by P. M. Cohn in 1960s. The term "pre-Schreier domain" is due to Muhammad Zafrullah. In general, an irreducible element is primal if and only if it is a prime element. Consequently, in a Schreier domain, every irreducible is prime. In particular, an atomic Schreier domain is a unique factorization domain; this generalizes the fact that an atomic GCD domain is a UFD.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог