Schreiers Subgroup Lemma

Schreiers Subgroup Lemma

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-5690-8
Объём: 108 страниц
Масса: 184 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! Schreier's subgroup lemma is a theorem in group theory used in the Schreier–Sims algorithm and also for finding a presentation of a subgroup. Suppose H is a subgroup of G, which is finitely generated with generating set S, that is, G = <S>. Let R be a right transversal of H in G. We make the definition that given g?G, overline{g} is the chosen representative in the transversal R of the coset Hg, that is, gin Hoverline{g}. Then H is generated by the set {rs(overline{rs})^{-1}|rin R, sin S}. Let us establish the evident fact that the group Z3=Z/3Z is indeed cyclic. Via Cayley's theorem, Z3 is a subgroup of the symmetric group S3. Now, Bbb{Z}_3={ e, (1 2 3), (1 3 2) } S_3={ e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2) } where e is the identity permutation. Note S3 = < { s1=(1 2), s2=(1 2 3) } >.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог