Schur Decomposition

Schur Decomposition

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-5643-4
Объём: 116 страниц
Масса: 196 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is an important matrix decomposition. A constructive proof for the Schur decomposition is as follows: every operator A on a complex finite-dimensional vector space has an eigenvalue , corresponding to some eigenspace V . Let V be its orthogonal complement. It is clear that, with respect to this orthogonal decomposition, A has matrix representation (one can pick here any orthonormal bases spanning V and V respectively) A = begin{bmatrix} lambda , I_{lambda}

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог