Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-5643-4 |
Объём: | 116 страниц |
Масса: | 196 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is an important matrix decomposition. A constructive proof for the Schur decomposition is as follows: every operator A on a complex finite-dimensional vector space has an eigenvalue , corresponding to some eigenspace V . Let V be its orthogonal complement. It is clear that, with respect to this orthogonal decomposition, A has matrix representation (one can pick here any orthonormal bases spanning V and V respectively) A = begin{bmatrix} lambda , I_{lambda}
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.