Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-7433-9 |
Объём: | 88 страниц |
Масса: | 153 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function zeta(s) = prod_{pinmathbb{P}} frac{1}{1-p^{-s}} where mathbb{P} is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the primes numbers. For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface. The zeros and poles of the Selberg zeta-function, Z(s), can be described in terms of spectral data of the surface.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.