Semialgebraic Set

Semialgebraic Set

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-5803-2
Объём: 72 страниц
Масса: 129 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, a semialgebraic set is a subset S of real n-dimensional space defined by a finite sequence of polynomial equations and inequalities; or any finite union of such sets. Such sets are studied as an extension of real algebraic geometry, in which only equations would be used, and in mathematical logic. Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seidenberg theorem says that they are also closed under the projection operation: in other words a semialgebraic set projected onto a linear subspace yields another such (as case of elimination of quantifiers). These properties together mean that semialgebraic sets form an o-minimal structure on R.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог