Sigma-ideal

Sigma-ideal

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-0066-3
Объём: 92 страниц
Масса: 160 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, particularly measure theory, a ?-ideal of a sigma-algebra (?, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is perhaps in probability theory. Let (X,?) be a measurable space (meaning ? is a ?-algebra of subsets of X). A subset N of ? is a ?-ideal if the following properties are satisfied: (i) ? N; (ii) When A ? N and B ? ? , B ? A ? B ? N; (iii) left{A_n right}_{ninmathbb{N}} subseteq N Rightarrow bigcup_{ninmathbb{N}} A_nin N. Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of ?-ideal is dual to that of a countably complete (?-) filter. If a measure ? is given on (X,?), the set of ?-negligible sets (S ? ? such that ?(S) = 0) is a ?-ideal.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог