Solenoid (Mathematics)

Solenoid (Mathematics)

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-5388-8
Объём: 68 страниц
Масса: 123 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms (Si, fi), fi: Si+1 ? Si, i ? 0, where each Si is a circle and fi is the map that uniformly wraps the circle Si+1 ni times (ni ? 2) around the circle Si. This construction can be carried out geometrically in the three-dimensional Euclidean space R3. A solenoid is a one-dimensional homogeneous indecomposable continuum that has the structure of a compact topological group. In the special case where all ni have the same value n, so that the inverse system is determined by the multiplication by n self map of the circle, solenoids were first introduced by Vietoris for n = 2 and by van Dantzig for an arbitrary n.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог