Solenoidal Vector Field

Solenoidal Vector Field

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-5408-3
Объём: 72 страниц
Масса: 129 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In vector calculus a solenoidal vector field is a vector field v with divergence zero: nabla cdot mathbf{v} = 0., The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as: mathbf{v} = nabla times mathbf{A} automatically results in the identity (as can be shown, for example, using Cartesian coordinates):nabla cdot mathbf{v} = nabla cdot (nabla times mathbf{A}) = 0. The converse also holds: for any solenoidal v there exists a vector potential A such that mathbf{v} = nabla times mathbf{A}.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог