Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-9993-6 |
Объём: | 104 страниц |
Масса: | 178 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, a Specht module is one of the representations of symmetric groups studied by Wilhelm Specht (1935). They are indexed by partitions, and in characteristic 0 the Specht modules of partitions of n form a complete set of irreducible representations of the symmetric group on n points. The elements ET can be considered as elements of the module V, by mapping each tableau to the tabloid it generates. The Specht module of the partition ? is the module generated by the elements ET as T runs through all tableaux of shape ?. The Specht module has a basis of elements ET for T a standard Young tableau. Over fields of characteristic 0 the Specht modules are irreducible, and form a complete set of irreducible representations of the symmetric group. A partition is called p-regular if it does not have p parts of the same (positive) size. Over fields of characteristic p>0 the Specht modules can be reducible. For p-regular partitions they have a unique irreducible quotient, and these irreducible quotients form a complete set of irreducible representations.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.