Specht Module

Specht Module

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-9993-6
Объём: 104 страниц
Масса: 178 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, a Specht module is one of the representations of symmetric groups studied by Wilhelm Specht (1935). They are indexed by partitions, and in characteristic 0 the Specht modules of partitions of n form a complete set of irreducible representations of the symmetric group on n points. The elements ET can be considered as elements of the module V, by mapping each tableau to the tabloid it generates. The Specht module of the partition ? is the module generated by the elements ET as T runs through all tableaux of shape ?. The Specht module has a basis of elements ET for T a standard Young tableau. Over fields of characteristic 0 the Specht modules are irreducible, and form a complete set of irreducible representations of the symmetric group. A partition is called p-regular if it does not have p parts of the same (positive) size. Over fields of characteristic p>0 the Specht modules can be reducible. For p-regular partitions they have a unique irreducible quotient, and these irreducible quotients form a complete set of irreducible representations.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог