Spherical Measure

Spherical Measure

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-9111-4
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics — specifically, in geometric measure theory — spherical measure ?n is the “natural” Borel measure on the n-sphere Sn. Spherical measure is often normalized so that it is a probability measure on the sphere, i.e. so that ?n(Sn) = 1. There are several ways to define spherical measure. One way is to use the usual “round” or “arclength” metric ?n on Sn; that is, for points x and y in Sn, ?n(x, y) is defined to be the (Euclidean) angle that they subtend at the centre of the sphere (the origin of Rn+1). Now construct n-dimensional Hausdorff measure Hn on the metric space (Sn, ?n) and define sigma^{n} = frac{1}{H^{n}(mathbf{S}^{n})} H^{n}.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог