Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-9111-4 |
Объём: | 80 страниц |
Масса: | 141 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics — specifically, in geometric measure theory — spherical measure ?n is the “natural” Borel measure on the n-sphere Sn. Spherical measure is often normalized so that it is a probability measure on the sphere, i.e. so that ?n(Sn) = 1. There are several ways to define spherical measure. One way is to use the usual “round” or “arclength” metric ?n on Sn; that is, for points x and y in Sn, ?n(x, y) is defined to be the (Euclidean) angle that they subtend at the centre of the sphere (the origin of Rn+1). Now construct n-dimensional Hausdorff measure Hn on the metric space (Sn, ?n) and define sigma^{n} = frac{1}{H^{n}(mathbf{S}^{n})} H^{n}.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.