Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1303-1287-9 |
Объём: | 68 страниц |
Масса: | 123 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! Spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as 1/R. Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential. For clarity, we illustrate the expansion for a point charge, then generalize to an arbitrary charge density rho. hrough this article, the primed coordinates such as mathbf{r^{prime}} refer to the position of charge(s), whereas the unprimed coordinates such as mathbf{r} refer to the point at which the potential is being observed. We also use spherical coordinates throughout, e.g., the vector mathbf{r^{prime}} has coordinates ( r^{prime}, theta^{prime}, phi^{prime}) where r^{prime} is the radius, theta^{prime} is the colatitude and phi^{prime} is the azimuthal angle.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.