Spherically Symmetric Spacetime

Spherically Symmetric Spacetime

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-8997-5
Объём: 108 страниц
Масса: 184 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! A spherically symmetric spacetime is one whose isometry group contains a subgroup which is isomorphic to the (rotation) group SO(3) and the orbits of this group are 2-dimensional spheres (2-spheres). The isometries are then interpreted as rotations and a spherically symmetric spacetime is often described as one whose metric is "invariant under rotations". The spacetime metric induces a metric on each orbit 2-sphere (and this induced metric must be a multiple of the metric of a 2-sphere). Spherical symmetry is a characteristic feature of many solutions of Einstein's field equations of general relativity, especially the Schwarzschild solution. A spherically symmetric spacetime can be characterised in another way, namely, by using the notion of Killing vector fields, which, in a very precise sense, preserve the metric. The isometries referred to above are actually local flow diffeomorphisms of Killing vector fields and thus generate these vector fields. For a spherically symmetric spacetime M, there are precisely 3 rotational Killing vector fields. Stated in another way, the dimension of the Killing algebra is 3 (dim K(M) = 3).

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог