Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-8997-5 |
Объём: | 108 страниц |
Масса: | 184 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! A spherically symmetric spacetime is one whose isometry group contains a subgroup which is isomorphic to the (rotation) group SO(3) and the orbits of this group are 2-dimensional spheres (2-spheres). The isometries are then interpreted as rotations and a spherically symmetric spacetime is often described as one whose metric is "invariant under rotations". The spacetime metric induces a metric on each orbit 2-sphere (and this induced metric must be a multiple of the metric of a 2-sphere). Spherical symmetry is a characteristic feature of many solutions of Einstein's field equations of general relativity, especially the Schwarzschild solution. A spherically symmetric spacetime can be characterised in another way, namely, by using the notion of Killing vector fields, which, in a very precise sense, preserve the metric. The isometries referred to above are actually local flow diffeomorphisms of Killing vector fields and thus generate these vector fields. For a spherically symmetric spacetime M, there are precisely 3 rotational Killing vector fields. Stated in another way, the dimension of the Killing algebra is 3 (dim K(M) = 3).
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.