Spline Interpolation

Spline Interpolation

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1310-3046-8
Объём: 156 страниц
Масса: 258 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. Spline interpolation is preferred over polynomial interpolation because the interpolation error can be made small even when using low degree polynomials for the spline. Thus, spline interpolation avoids the problem of Runge's phenomenon which occurs when using high degree polynomials. Using polynomial interpolation, the polynomial of degree n which interpolates the data set is uniquely defined by the data points. The spline of degree n which interpolates the same data set is not uniquely defined, and we have to fill in n-1 additional degrees of freedom to construct a unique spline interpolant.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог