Split Lie Algebra

Split Lie Algebra

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-2714-1
Объём: 72 страниц
Масса: 129 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In the mathematical field of Lie theory, a split Lie algebra is a pair (mathfrak{g}, mathfrak{h}) where mathfrak{g} is a Lie algebra and mathfrak{h} < mathfrak{g} is a splitting Cartan subalgebra, where "splitting" means that for all x in mathfrak{h}, operatorname{ad}_{mathfrak{g}} h is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center. Over an algebraically closed field such as the complex numbers, all semisimple Lie algebras are splittable (indeed, the Cartan subalgebra acts not only by triangularizable matrices but a fortiori by diagonalizable ones) and all splittings are conjugate; thus split Lie algebras are of most interest for non-algebraically closed fields.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог