Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-2789-9 |
Объём: | 76 страниц |
Масса: | 135 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In abstract algebra, the splitting field of a polynomial P(X) over a given field K is a field extension L of K over which P factorizes ("splits", hence the name of a splitting field) into linear factors X – ai, and such that the ai generate L over K. The extension L is then an extension of minimal degree over K in which P splits. It can be shown that such splitting fields exist, and are unique up to isomorphism; the amount of freedom in that isomorphism is known to be the Galois group of P (if we assume it is separable). For an example if K is the rational number field Q and P(X) = X3 – 2, then a splitting field L will contain a primitive cube root of unity, as well as a cube root of 2.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.