Splitting Field

Splitting Field

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-2789-9
Объём: 76 страниц
Масса: 135 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In abstract algebra, the splitting field of a polynomial P(X) over a given field K is a field extension L of K over which P factorizes ("splits", hence the name of a splitting field) into linear factors X – ai, and such that the ai generate L over K. The extension L is then an extension of minimal degree over K in which P splits. It can be shown that such splitting fields exist, and are unique up to isomorphism; the amount of freedom in that isomorphism is known to be the Galois group of P (if we assume it is separable). For an example if K is the rational number field Q and P(X) = X3 – 2, then a splitting field L will contain a primitive cube root of unity, as well as a cube root of 2.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог