Stable Module Category

Stable Module Category

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-3966-3
Объём: 100 страниц
Масса: 172 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In representation theory, the stable module category is a category in which projectives are "factored out." Let R be a ring. For two modules M and N, define underline{mathrm{Hom}}(M,N) to be the set of R-linear maps from M to N modulo the relation that f~g if f-g factors through a projective module. The stable module category is defined by setting the objects to be the R-modules, and the morphisms are the equivalence classes underline{mathrm{Hom}}(M,N). Given a module M, let P be a projective module with a surjection p colon P to M. Then set ?(M) to be the kernel of p. Suppose we are given a morphism f colon M to N and a surjection q colon Q to N where Q is projective. Then one can lift f to a map P to Q which maps ?(M) into ?(N). This gives a well-defined functor ? from the stable module category to itself.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог