Stanleys Reciprocity Theorem

Stanleys Reciprocity Theorem

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-4957-0
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In combinatorial mathematics, Stanley's reciprocity theorem, named after MIT mathematician Richard P. Stanley, states that a certain functional equation is satisfied by the generating function of any rational cone (defined below) and the generating function of the cone's interior. A rational cone is the set of all d-tuples (a1, ..., ad) of nonnegative integers satisfying a system of inequalities Mleft[begin{matrix}a_1 vdots a_dend{matrix}right] geq left[begin{matrix}0 vdots 0end{matrix}right] where M is a matrix of integers. A d-tuple satisfying the corresponding strict inequalities, i.e., with ">" rather than ">=", is in the interior of the cone. The generating function of such a cone is F(x_1,dots,x_d)=sum_{(a_1,dots,a_d)in {rm cone}} x_1^{a_1}cdots x_d^{a_d}. The generating function Fint(x1, ..., xd) of the interior of the cone is defined in the same way, but one sums over d-tuples in the interior rather than in the whole cone. It can be shown that these are rational functions.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог