Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1303-6165-5 |
Объём: | 156 страниц |
Масса: | 258 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In differential geometry, Stokes' theorem is a statement about the integration of differential forms on manifolds, which generalizes several theorems from vector calculus. William Thomson first discovered the result and communicated it to George Stokes in July 1850. Stokes set the theorem as a question on the 1854 Smith's Prize exam, which led to the result bearing his name. The fundamental theorem of calculus states that the integral of a function f over the interval [a, b] can be calculated by finding an antiderivative F of f: int_a^b f(x),mathrm dx = F(b) - F(a).
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.