Stratification (mathematics)

Stratification (mathematics)

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-3861-1
Объём: 76 страниц
Масса: 135 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! Stratification has several usages in mathematics. In mathematical logic, stratification is any consistent assignment of numbers to predicate symbols guaranteeing that a unique formal interpretation of a logical theory exists. Specifically, for Horn clause theories, we say that such a theory is stratified if and only if there is a stratification assignment S that fulfills the following conditions: 1. If a predicate P is positively derived from a predicate Q, then the stratification number of P must be greater than or equal to the stratification number of Q, in short S(P) geq S(Q). 2. If a predicate P is derived from a negated predicate Q, then the stratification number of P must be greater than the stratification number of Q, in short S(P) > S(Q).

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог