Strongly Compact Cardinal

Strongly Compact Cardinal

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-3416-3
Объём: 76 страниц
Масса: 135 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematical set theory, a strongly compact cardinal is a certain kind of large cardinal number; their existence can neither be proven nor disproven from the standard axioms of set theory. A cardinal ? is strongly compact if and only if every ?-complete filter can be extended to a ? complete ultrafilter. Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal ? is defined by requiring the number of operands for each operator to be less than ?; then ? is strongly compact if its logic satisfies an analog of the compactness property of finitary logic. Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less than ?.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог