Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-3416-3 |
Объём: | 76 страниц |
Масса: | 135 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematical set theory, a strongly compact cardinal is a certain kind of large cardinal number; their existence can neither be proven nor disproven from the standard axioms of set theory. A cardinal ? is strongly compact if and only if every ?-complete filter can be extended to a ? complete ultrafilter. Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal ? is defined by requiring the number of operands for each operator to be less than ?; then ? is strongly compact if its logic satisfies an analog of the compactness property of finitary logic. Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less than ?.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.