Superreal Number

Superreal Number

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-7136-6
Объём: 84 страниц
Масса: 147 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! Suppose X is a Tychonoff space, also called a T3.5 space, and C(X) is the algebra of continuous real-valued functions on X. Suppose P is a prime ideal in C(X). Then the factor algebra A = C(X)/P is by definition an integral domain which is a real algebra and which can be seen to be totally ordered. The field of fractions F of A is a superreal field if F strictly contains the real numbers Bbb{R}, so that F is not order isomorphic to Bbb{R}. If the prime ideal P is a maximal ideal, then F is a field of hyperreal numbers. The terminology is due to Dales and Woodin. Dales and Woodin's supperreals are different from super-real numbers of David O. Tall, which are lexicographically ordered fractions of formal power series over the reals.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог