Symplectic Vector Space

Symplectic Vector Space

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-3803-1
Объём: 104 страниц
Масса: 178 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew-symmetric, bilinear form called the symplectic form.Working in a fixed basis, can be represented by a matrix. The two conditions above say that this matrix must be skew-symmetric and nonsingular. This is not the same thing as a symplectic matrix, which represents a symplectic transformation of the space.If V is finite-dimensional then its dimension must necessarily be even since every skew-symmetric matrix of odd size has determinant zero. A nondegenerate skew-symmetric bilinear form behaves quite differently from a nondegenerate symmetric bilinear form, such as the dot product on Euclidean vector spaces. With a Euclidean inner product g, we have g(v,v) > 0 for all nonzero vectors v, whereas a symplectic form satisfies (v,v) = 0.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог