Systoles of Surfaces

Systoles of Surfaces

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-4294-6
Объём: 108 страниц
Масса: 184 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949 (unpublished; see remark at end of Pu's paper in '52). Given a closed surface, its systole, denoted sys, is defined to the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry. A similar result is given by Pu's inequality for the real projective plane from 1952, due to Pao Ming Pu, with an upper bound of ?/2 for the systolic ratio SR(RP2), also attained in the constant curvature case.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог