Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-4326-4 |
Объём: | 72 страниц |
Масса: | 129 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In number theory, Szemeredi's theorem refers to the proof of the Erdos–Turan conjecture. In 1936 Erdos and Turan conjectured for every value d called density 0 < d <1 and every integer k there is a number N(d,k) such that every subset A of {1,...,N(d,k)} of cardinality dN contains a length-k arithmetic progression, provided N > N(d,k). This generalizes the statement of van der Waerden's theorem. The cases k=1 and k=2 are trivial. The case k = 3 was established in 1956 by Klaus Roth by an adaptation of the Hardy-Littlewood circle method. The case k = 4 was established in 1969 by Endre Szemeredi by a combinatorial method. Using an approach similar to the one he used for the case k = 3, Roth gave a second proof for this in 1972.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.