Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-7201-4 |
Объём: | 72 страниц |
Масса: | 129 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! Tarski's circle-squaring problem is the challenge, posed by Alfred Tarski in 1925, to take a disc in the plane, cut it into finitely many pieces, and reassemble the pieces so as to get a square of equal area. This was proven to be possible by Miklos Laczkovich in 1990; the decomposition makes heavy use of the axiom of choice and is therefore non-constructive. Laczkovich's decomposition uses about 1050 different pieces. In particular, it is impossible to dissect a circle and make a square using pieces that could be cut with scissors (that is, having Jordan curve boundary). The pieces used in Laczkovich's proof are non-measurable subsets.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.