Издательство: | Либроком |
Дата выхода: | январь 2012 |
ISBN: | 978-5-397-01590-5 |
Объём: | 184 страниц |
Обложка: | мягкая |
В настоящем учебном пособии излагаются основные вопросы теории меры и интеграла в абстрактном множестве, в частности, меры Лебега в R^m и Лебега-Стилтьеса в R. Пособие содержит общие свойства мер, вопросы продолжения и единственности, теорию измеримых функций, включая вопросы сходимости и приближения непрерывными функциями (теоремы Лебега, Рисса, Егорова, Лузина, Фреше); теорию интеграла Лебега с теоремами о предельном переходе Лебега, Фату, Витали; свойства зарядов и теорему Радона-Никодима; произведение мер и теоремы Тонелли и Фубини. В книгу также включены вопросы, связанные с функциональными пространствами (сходимость, сепарабельность, полнота). Имеется достаточное число упражнений для самостоятельной работы.
Для студентов математических специальностей университетов и педагогических институтов.