Теория приближений. Функциональные сплайны в топологических векторных пространствах

Теория приближений. Функциональные сплайны в топологических векторных пространствах

А. П. Колесников

     

бумажная книга

14.99 USD


В корзину


Наличие на складе:

Склад в Москве

Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 05.12.2024; планируемая отправка: 06.12.2024

Склад в С.-Петербурге

Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 08.12.2024; планируемая отправка: 09.12.2024



Издательство: Либроком
Дата выхода: август 2015
ISBN: 978-5-397-05071-5
Объём: 464 страниц

Вопросы теории приближений в данной книге рассматриваются в самой общей ситуации приближения элементов абстрактных топологических векторных пространств функциональными сплайнами. Понятие функционального сплайна определено как точное решение системы линейных функциональных уравнений в пространствах с локально выпуклой топологией. В основе метода его построения лежит теория двойственности в локально выпуклых пространствах. Вариационное решение конечной системы называется алгебраическим сплайном. Он строится в виде конечного разложения по точно вычисленному семейству функций, двойственному для заданных функционалов системы.
Если система бесконечна (счетна), исследуются вопросы выбора векторных пространств, в которых ищется решение, топологий в них и формулируются требования к свойствам заданного счетного семейства функционалов системы, с тем чтобы дуальное для него счетное множество функций образовало базис Шаудера в выбранном топологическом пространстве. Дается способ точного вычисления базиса. Приближение для элемента соответствующего пространства строится в форме разложения по данному базису. Аппроксимирующие конструкции по аналогии со сплайнами Шенберга названы топологическими сплайнами. Рассмотренная весьма общая ситуация охватывает и классическую теорию сплайнов. Такое определение сплайна в общем случае не связано с выбором сетки.
Метод проективного предела используется для построения базисов в ядерных пространствах. В частности, переходом к проективному пределу в последовательности пространств Соболева вычислен базис в пространстве Шварца.
Установлена связь рассмотренной теории с классической теорией приближений. Классические семейства функций - алгебраические многочлены, тригонометрические многочлены и семейство показательных функций - вычислены как базисные в предельных пространствах для некоторых счетных последовательностей пространств с полускалярным произведением.
Книга предназначена для студентов и аспирантов физико-математических специальностей, а также научных работников и преподавателей, интересующихся современными вопросами численного анализа. В книге рассматриваются не только вопросы теории, но и большое количество практических задач.

Каталог