Издательство: | Либроком |
Дата выхода: | октябрь 2019 |
ISBN: | 978-5-397-06490-3 |
Объём: | 248 страниц |
Обложка: | мягкая |
В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к самостоятельному решению задач: слишком простые задачи решать скучно; слишком сложные демотивируют средних и слабых студентов, а у сильных студентов зачастую отнимают неоправданно большое количество времени, которым в реальном учебном процессе они не обладают. Большинство задач приведено с подробными решениями. Как правило, вслед за разобранной задачей приводится набор аналогичных задач для самостоятельного решения, способствующих закреплению материала. Задачник охватывает все основные разделы курса Теория вероятностей и математическая статистика, который читается в настоящее время в НИУ ВШЭ: основные сведения о дискретных случайных величинах; основные дискретные распределения: распределение Бернулли, биномиальное распределение, распределение Пуассона, геометрическое распределение; условная вероятность, формула умножения вероятностей, формула полной вероятности, формула Байеса; абсолютно непрерывные случайные величины; основные абсолютно непрерывные распределения: равномерное распределение, нормальное распределение, показательное (экспоненциальное) распределение; центральная предельная теорема, неравенство Берри-Эссеена; абсолютно непрерывные случайные векторы; основные способы получения точечных оценок: метод моментов, метод максимального правдоподобия; основные характеристики оценок: несмещенность, эффективность и состоятельность; доверительные интервалы; тестирование параметрических гипотез (при помощи леммы Неймана-Пирсона); хи-квадрат критерий Пирсона; тестирование параметрических гипотез (при помощи метода максимального правдоподобия): тест отношения правдоподобия, тест Вальда, тест множителей Лагранжа. В дополнениях 1 и 2 пособия рассматриваются задачи (с решениями), относящиеся к более сложным темам: свойства вероятностной меры; сходимость по вероятности и по распределению. В первую очередь пособие предназначено для студентов экономических специальностей и преподавателей, ведущих практические занятия по курсу Теория вероятностей и математическая статистика. Однако оно также может быть использовано для проведения практических занятий по аналогичному курсу в технических вузах.