Text Mining

Text Mining

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1303-1901-4
Объём: 68 страниц
Масса: 123 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! Text mining, sometimes alternately referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text. High-quality information is typically derived through the divining of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities).

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог