Thurston Elliptization Conjecture

Thurston Elliptization Conjecture

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-4581-0
Объём: 68 страниц
Масса: 123 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! William Thurston's elliptization conjecture states that a closed 3-manifold with finite fundamental group is spherical, i.e. has a Riemannian metric of constant positive sectional curvature. A 3-manifold with such a metric is covered by the 3-sphere, moreover the group of covering transformations are isometries of the 3-sphere. Note that this means that if the original 3-manifold had in fact a trivial fundamental group, then it is homeomorphic to the 3-sphere (via the covering map). Thus, proving the elliptization conjecture would prove the Poincare conjecture as a corollary. In fact, the elliptization conjecture is logically equivalent to two simpler conjectures: the Poincare conjecture and the spherical space form conjecture.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог