Topic Model

Topic Model

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1332-6432-8
Объём: 72 страниц
Масса: 129 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In machine learning and natural language processing, a topic model is a type of statistical model for discovering the abstract "topics" that occur in a collection of documents. An early topic model was probabilistic latent semantic indexing (PLSI), created by Thomas Hofmann in 1999. Latent Dirichlet allocation (LDA), perhaps the most common topic model currently in use, is a generalization of PLSI developed by David Blei, Andrew Ng, and Michael Jordan in 2002, allowing documents to have a mixture of topics.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог