Train track map

Train track map

Jesse Russell Ronald Cohn

     

бумажная книга



ISBN: 978-5-5085-7879-4

High Quality Content by WIKIPEDIA articles! In the mathematical subject of geometric group theory a train track map is a continuous map f from a finite connected graph to itself which is a homotopy equivalence and which has particularly nice cancellation properties with respect to iterations. This map sends vertices to vertices and edges to nontrivial edge-paths with the property that for every edge e of the graph and for every positive integer n the path fn(e) is immersed, that is fn(e) is locally injective on e. Train-track maps are a key tool in analyzing the dynamics of automorphisms of finitely generated free groups and in the study of the Culler–Vogtmann Outer space.