Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-4301-4 |
Объём: | 104 страниц |
Масса: | 178 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! The Turan–Kubilius inequality is a mathematical theorem in probabilistic number theory. It is useful for proving results about the normal order of an arithmetic function. :305–308 The theorem was proved in a special case in 1934 by Paul Turan and generalized in 1956 and 1964 by Jonas Kubilius. Turan developed the inequality to create a simpler proof of the Hardy–Ramanujan theorem about the normal order of the number (n) of distinct prime divisors of an integer n.:316 There is an exposition of Turan's proof in Hardy
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.