Tur?n–Kubilius Inequality

Tur?n–Kubilius Inequality

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-4301-4
Объём: 104 страниц
Масса: 178 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! The Turan–Kubilius inequality is a mathematical theorem in probabilistic number theory. It is useful for proving results about the normal order of an arithmetic function. :305–308 The theorem was proved in a special case in 1934 by Paul Turan and generalized in 1956 and 1964 by Jonas Kubilius. Turan developed the inequality to create a simpler proof of the Hardy–Ramanujan theorem about the normal order of the number (n) of distinct prime divisors of an integer n.:316 There is an exposition of Turan's proof in Hardy

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог