Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-6802-4 |
Объём: | 132 страниц |
Масса: | 221 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In functional analysis, the ultrastrong topology, or ?-strong topology, or strongest topology on the set B(H) of bounded operators on a Hilbert space is the topology defined by the family of seminorms pw(x) for positive elements w of the predual L(H)* of trace class operators. The ultrastrong topology is similar to the strong (operator) topology. For example, on any norm-bounded set the strong operator and ultrastrong topologies are the same. The ultrastrong topology is stronger than the strong operator topology. One problem with the strong operator topology is that the dual of B(H) with the strong operator topology is "too small". The ultrastrong topology fixes this problem: the dual is the full predual B*(H) of all trace class operators. In general the ultrastrong topology is better than the strong operator topology, but is more complicated to define so people usually use the strong operator topology if they can get away with it.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.