Vanish at Infinity

Vanish at Infinity

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-2348-1
Объём: 88 страниц
Масса: 153 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, a function on a normed vector space is said to vanish at infinity if f(x)to 0 as |x|to infty. For example, the function f(x)=frac{1}{1+x^2} defined on the real line vanishes at infinity. There is a generalization of this to a locally compact setting. A function f on a locally compact space (which may not have a norm) vanishes at infinity if, given any positive number , there is a compact subset K such that |f(x)| < epsilon whenever the point x lies outside of K. Both of these notions correspond to the intuitive notion of adding a point "at infinity" and requiring the values of the function to get arbitrarily close to zero as we approach it. This "definition" can be formalized in many cases by adding a point at infinity.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог