Variable-order Bayesian Network

Variable-order Bayesian Network

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1303-3553-3
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! Variable-order Bayesian network models provide an important extension of both the Bayesian network models and the variable-order Markov models. Variable-order Bayesian network models are used in machine learning in general and have shown great potential in bioinformatics applications. These models extend the widely-used position weight matrix models, Markov models, and Bayesian network models. In contrast to the BN models, where each random variable depends on a fixed subset of random variables, in Variable-order Bayesian network models these subsets may vary based on the specific realization of observed variables. The observed realizations are often called the context and, hence, Variable-order Bayesian network models are also known as context-specific Bayesian networks. The flexibility in the definition of conditioning subsets of variables turns out to be a real advantage in classification and analysis applications, as the statistical dependencies between random variables in a sequence of variables may be taken into account efficiently, and in a position-specific and context-specific manner.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог