Weak Operator Topology

Weak Operator Topology

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1303-6343-7
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space H such that the functional sending an operator T to the complex number <Tx, y> is continuous for any vectors x and y in the Hilbert space. The strong operator topology, or SOT, on B(H) is the topology of pointwise convergence. Because the inner product is a continuous function, the SOT is stronger than WOT. The following example shows that this inclusion is strict. Let H = ? 2(N) and consider the sequence {Tn} where T is the unilateral shift. An application of Cauchy-Schwarz shows that Tn ? 0 in WOT. But clearly Tn does not converge to 0 in SOT.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог