Weingarten Function

Weingarten Function

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-8284-6
Объём: 152 страниц
Масса: 252 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, Weingarten functions are rational functions indexed by partitions of integers that can be used to calculate integrals of products of matrix coefficients over classical groups. They were first studied by Weingarten (1978) who found their asymptotic behavior, and named by Collins (2003), who evaluated them explicitly for the unitary group. The Weingarten functions are rational functions in d. They can have poles for small values of d, which cancel out in the formula above. There is an alternative inequivalent definition of Weingarten functions, where one only sums over partitions with at most d parts. This is no longer a rational function of d, but is finite for all positive integers d. The two sorts of Weingarten functions coincide for d larger than q, and either can be used in the formula for the integral. For orthogonal and symplectic groups the Weingarten functions were evaluated by Collins

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог