Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-7063-8 |
Объём: | 112 страниц |
Масса: | 190 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In differential topology, the Whitney immersion theorem states that for m > 1, any smooth m-dimensional manifold can be immersed in Euclidean 2m ? 1-space. Equivalently, every smooth m-dimensional manifold can be immersed in the 2m ? 1-dimensional sphere (this removes the m > 1 constraint). The weak version, for 2m, is due to transversality (general position, dimension counting): two m-dimensional manifolds in mathbf{R}^{2m} intersect generically in a 0-dimensional space.Massey went on to prove that every n-dimensional manifold is cobordant to a manifold that immerses in S2n ? a(n) where a(n) is the number of 1's that appear in the binary expansion of n. In the same paper, Massey proved that for every n there is manifold (which happens to be a product of real projective spaces) that does not immerse in S2n ? 1 ? a(n).
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.