Z Function

Z Function

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-8164-1
Объём: 116 страниц
Масса: 196 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, the Z-function is a function used for studying the Riemann zeta-function along the critical line where the real part of the argument is one-half. It is also called the Riemann-Siegel Z-function, the Riemann-Siegel zeta-function, the Hardy function, the Hardy Z-function and the Hardy zeta-function.It follows from the functional equation of the Riemann zeta-function that the Z-function is real for real values of t. It is an even function, and real analytic for real values. It follows from the fact that the Riemann-Siegel theta-function and the Riemann zeta-function are both holomorphic in the critical strip, where the imaginary part of t is between -1/2 and 1/2, that the Z-function is holomorphic in the critical strip also. Moreover, the real zeros of Z(t) are precisely the zeros of the zeta-function along the critical line, and complex zeros in the Z-function critical strip correspond to zeros off the critical line of the Riemann zeta-function in its critical strip.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог